Effect of Age on the Seasonality of Maturation and Spawning of Atlantic Cod, *Gadus morhua*, in the Northwest Atlantic

Jeffrey A. Hutchings and Ransom A. Myers

Department of Fisheries and Oceans, Science Branch, P.O. Box 5667, St. John's NF A1C 5X1, Canada

Analysis of 46 yr of research trawl survey data from seven regions in the Northwest Atlantic (Newfoundland and Labrador) indicated that older individuals of Atlantic cod, *Gadus morhua*, of both sexes initiated and completed spawning later, and spawned for a greater length of time, than younger individuals. Within regions, males were in spawning condition for longer periods than females. Among regions, spawning duration of males (age = 11 yr) averaged 43.5 ± 13.6 d and was significantly longer than that of females (age = 11 yr; 25.2 ± 8.4 d). The strong association between age and time of spawning provides empirical evidence of size-specific, assortative mating in cod. The decline in recruitment of cod in NAFO Division 2J3KL since 1962 is associated with a dramatic reduction in the fecundity contribution of older (15–20 yr) relative to younger (7–9 yr) individuals. Our results indicate that this increase in proportional abundance of younger individuals should be concomitant with a decline in the duration of spawning time, reducing the probability that larval emergence will match peak abundances of zooplankton. Thus, age dependence of maturation and spawning times provides a mechanism by which size-selective mortality against larger, older individuals can increase variability in recruitment in Atlantic cod.

L’analyse des données de campagne de chalutage portant sur une période de 46 ans et provenant de sept régions dans le nord-ouest de l’Atlantique (Terre-Neuve et Labrador) a montré que des individus âgés de morue franche, *Gadus morhua*, des deux sexes entreprenaient et terminaient leur période de fraye plus tard, et frayaient plus longtemps que de jeunes individus. Dans les régions, les mâles étaient prêts à frayer pendant des périodes plus longues que les femelles. D’une région à l’autre, la durée de la fraye chez les mâles (âge = 11 ans) s’établissait en moyenne à 43,5 ± 13,6 jours et elle était significativement plus longue que chez les femelles (âge = 11 ans; 25,2 ± 8,4 jours). La forte association entre l’âge et la durée de la fraye prouve de façon empirique qu’il y a accouplement en fonction de la taille chez la morue. La baisse du recrutement chez la morue de la division 2J3KL de l’OPANO depuis 1962 est associée à une baisse spectaculaire de la fécondité des individus âgés (15 à 20 ans) par rapport aux jeunes individus (7 à 9 ans). Nos résultats montrent que cette augmentation de l’abondance proportionnelle de jeunes individus devrait être concomitante à une baisse de la durée de la fraye, ce qui réduit la probabilité que l’émergence des larves corresponde aux abondances maximales du zooplancton. La période de maturation et de fraye selon l’âge fournit donc un mécanisme selon lequel la mortalité selon la taille, par rapport à des individus plus âgés et plus gros peut augmenter la variabilité du recrutement chez la morue franche.

Received February 3, 1993
Accepted May 31, 1993

Temporal variation in the timing of reproduction represents a potentially important source of variability in the recruitment of juveniles to the adult portion of any fish population. The physical environment, for example, might delay or unduly extend the spawning period through temperature-induced constraints on the migration of adults to spawning habitat or on the physiological processes associated with maturation. Individual factors such as age and body size can also influence the timing of reproduction. If it is advantageous to spawn as early as possible in the spawning season, older females may spawn earlier than younger females because of sexual selection, by males, for large body size (e.g., kokanee salmon, *Oncorhynchus nerka*, Foote 1988). Similarly, smaller female salmonids may delay reproduction until larger females have spawned to reduce egg mortality by egg nest superimposition (van den Berghe and Gross 1984; Myers 1986). Alternatively, larger individuals may reproduce later than smaller individuals because of longer maturation periods affected by generally slower metabolic rates or by greater, size-independent energy costs (Peters 1983).

Age-specific differences in the rate of gonadal development or in the duration of spawning should increase recruitment variability when the age-specific survival of adults varies from one generation to the next. Variability in survival is common in commercially exploited populations. Recruitment of Atlantic cod, *Gadus morhua* (as determined by virtual population analysis; Baird et al. 1992), in Northwest Atlantic Fisheries Organization (NAFO) Division 2J3KL off Labrador and northern Newfoundland varied by almost an order of magnitude from 1962 to 1988 (Fig. 1A). The temporal decline in cod abundance was accompanied by an overall 85% reduction in the total fecundity of old individuals (15–20 yr) relative to the total fecundity of young individuals (7–9 yr) (Fig. 1B) (age ranges were chosen simply to be representative of old and young mature fish). This reduction may be indicative of a progressive decrease in the proportion of older females in the spawning population and a concomitant narrowing of the variation in age among reproductive individuals. If age significantly influences the timing of reproduction, then a decline in the number of age classes during spawning
may shorten the duration of the spawning season and reduce the likelihood that larvae begin feeding during the period of peak zooplankton abundance. Our objective is to use research trawl data, collected over 46 yr, to determine the influence of age on the timing of maturation and spawning in male and female Atlantic cod.

Materials and Methods

Spawning times were calculated from research trawl surveys conducted between 1946 and 1991 by the Canadian Department of Fisheries and Oceans and its predecessors. Prior to the early 1970’s, cod were sampled systematically by line transect surveys. Surveys undertaken since that time were randomly stratified by depth. We combined all research surveys for our analyses. Data were analyzed for each of seven geographical areas in the Newfoundland/Labrador Region (Fig. 2). These areas included NAFO Divisions 3L, 3N, 3O, and 3Ps, in entirety, Divisions 4R and 4S in the northern Gulf of St. Lawrence were combined (4RS). Data from Divisions 2J and 3K were represented by Belle Isle Bank in the north and by Funk Island Bank in the south. Flemish Cap (NAFO Division 3M), Hamilton Bank (2J), and the northern coast of Labrador (2GH) were excluded from the analyses because of insufficient data. Ice cover restricted extensive sampling during spawning in Belle Isle and Funk Island banks. Myers et al. (1993) provided a summary of the monthly samples available from these regions.

Individuals were analyzed by sex and by maturation stage (following Templeman et al. 1978) (Table 1). Females were divided into three stages: maturing (eggs opaque and visible to naked eye), spawning (ovary containing clear eggs, clarity being indicative of hydration and readiness for release; cf. Kjesbu 1989; Rijnsdorp 1989), and spent (ovaries whitish-grey or blush-grey, slack, and often wrinkled; residual eggs often present). The three maturation stages for males were maturing (colour of testes ranging from gray or pink to white; little or no sperm in the vas deferentia), spawning (testes and vas deferentia white and full of milt), and spent (testes grey or pink; milt not evident in outer edges at the time that all females are spent).

To examine the influence of age on the timing of a given maturation stage, all individuals whose gonads were in a developmental state preceding the stage of interest were classified 0 and all remaining individuals were classified 1. Age determinations were calculated from otoliths. We used a maximum likelihood probit analysis to analyze the effects of age on the timing of two maturity states (spawning, spent). The probability, p, of an individual maturing at age a years on day of year t was assumed to be

$$p = \Phi(b_0 + b_1 a + b_2 a)$$

where Φ is the cumulative distribution function for the standard normal distribution and b_0, b_1, and b_2 are the probit regression parameters. For a given t, the standard deviation of the timing of each stage at a given age a is $1/b_2$. Following the PROC PROBIT procedure in SAS (SAS Institute 1989), the standard errors of the parameters were inflated by a heterogeneity factor if there was a lack of fit caused by extrabinomial variation. This extrabinomial variation is expected because of cluster sampling from trawls and perhaps microgeographic or interannual variability in maturity.

We defined the times of initiation and cessation of spawning of individuals aged a years as the day of year, t, on which 50% of the fish were expected to be in a spawning or spent condition, respectively. Thus, given that $0.5 = \Phi(0)$, times of spawning initiation and cessation can be calculated as

$$t = (-\frac{b_0 - b_2 a}{b_1})$$

Spawning duration was defined as the difference in times of spawning initiation and spawning cessation.

Results

Age had a significantly positive effect on the initiation and cessation of spawning for males and females in all regions (Table 2). Older individuals of both sexes completed spawning later than younger individuals (Fig. 3 and 4). Younger individuals began spawning before older individuals in all regions although the age effect was not significant for either males or females in 3L and 4RS.

The slopes of the probit regressions relating age to the cessation of spawning were greater than the slopes of the regressions between age and the initiation of spawning in all but two cases (Fig 3 and 4). The probability of obtaining 12 such deviations
among the 14 cases observed is significantly greater than expected by chance alone (sign test; \(t_s = 3.77 > t_{0.0113} = 3.01 \)).

This slope divergence, which was more evident among males, indicates that older individuals have a longer reproductive period than younger individuals. The two regions in which the slopes did not diverge for females (Belle Isle and Funk Island banks) were characterized by disproportionately low sample sizes of spawning individuals (Table 1).

Spawning duration for males aged 11 (the midrange of 6–16 yr) (range: 22 d in 3N to 57 d in 4RS) was longer than that for similarly aged females (range: 6 d in Belle Isle Bank to 32 d in 3O) within each region. Among regions, the spawning duration of males aged 11 yr (38.6 ± 13.8 d) was significantly greater than that for females (19.8 ± 11.5 d; \(F_{(1,12)} = 7.58; p = 0.017, p \) was assessed from 1000 data randomizations; cf. Manly 1991). If the two regions for which sample sizes of spawning individuals were disproportionately small (Belle Isle and Funk Island banks) are excluded, spawning duration of 11-yr-old

TABLE 1. Sample sizes of Atlantic cod in various reproductive states (see text for explanation) in research trawls conducted off Newfoundland from 1946 to 1991.

<table>
<thead>
<tr>
<th>Region</th>
<th>Females</th>
<th></th>
<th>Males</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maturing</td>
<td>Spawning</td>
<td>Spent</td>
<td>Maturing</td>
<td>Spawning</td>
<td>Spent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belle Isle</td>
<td>1360</td>
<td>118</td>
<td>14263</td>
<td>1279</td>
<td>335</td>
<td>14133</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funk Island</td>
<td>1328</td>
<td>99</td>
<td>3973</td>
<td>1385</td>
<td>191</td>
<td>2475</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3L</td>
<td>2928</td>
<td>1167</td>
<td>5480</td>
<td>3438</td>
<td>1832</td>
<td>6289</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3N</td>
<td>1073</td>
<td>209</td>
<td>1574</td>
<td>1149</td>
<td>416</td>
<td>4760</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3O</td>
<td>1447</td>
<td>299</td>
<td>1070</td>
<td>1492</td>
<td>557</td>
<td>1237</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3Ps</td>
<td>2376</td>
<td>249</td>
<td>764</td>
<td>2926</td>
<td>396</td>
<td>817</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4RS</td>
<td>1164</td>
<td>119</td>
<td>2099</td>
<td>4855</td>
<td>338</td>
<td>6877</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 3. Estimated relationship between age and the day of year at which 50% of female Atlantic cod enter into spawning and spent maturation states. See text for details.

TABLE 2. Probit regression coefficients (β in Eq. 1) of the effects of age on the timing of reproduction in female and male Atlantic cod (standard errors in parentheses). *0.01 < p < 0.05; **0.001 < p < 0.01; *** p < 0.001.

<table>
<thead>
<tr>
<th>Region</th>
<th>Spawning Females</th>
<th>Spent Females</th>
<th>Spawning Males</th>
<th>Spent Males</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belle Isle</td>
<td>-0.135***</td>
<td>-0.129***</td>
<td>-0.144***</td>
<td>-0.201***</td>
</tr>
<tr>
<td>(0.013)</td>
<td>(0.017)</td>
<td>(0.017)</td>
<td>(0.040)</td>
<td>(0.022)</td>
</tr>
<tr>
<td>Funk Island</td>
<td>-0.120***</td>
<td>-0.133***</td>
<td>-0.133***</td>
<td>-0.203***</td>
</tr>
<tr>
<td>(0.019)</td>
<td>(0.017)</td>
<td>(0.017)</td>
<td>(0.022)</td>
<td>(0.022)</td>
</tr>
<tr>
<td>3L</td>
<td>0.001</td>
<td>-0.064***</td>
<td>-0.008</td>
<td>-0.070***</td>
</tr>
<tr>
<td>(0.007)</td>
<td>(0.008)</td>
<td>(0.010)</td>
<td>(0.012)</td>
<td>(0.012)</td>
</tr>
<tr>
<td>3N</td>
<td>-0.108***</td>
<td>-0.155***</td>
<td>-0.054***</td>
<td>-0.149***</td>
</tr>
<tr>
<td>(0.009)</td>
<td>(0.017)</td>
<td>(0.009)</td>
<td>(0.011)</td>
<td>(0.011)</td>
</tr>
<tr>
<td>3O</td>
<td>-0.101***</td>
<td>-0.223***</td>
<td>-0.065***</td>
<td>-0.200***</td>
</tr>
<tr>
<td>(0.011)</td>
<td>(0.028)</td>
<td>(0.009)</td>
<td>(0.017)</td>
<td>(0.017)</td>
</tr>
<tr>
<td>3Ps</td>
<td>-0.050***</td>
<td>-0.077***</td>
<td>-0.060***</td>
<td>-0.108***</td>
</tr>
<tr>
<td>(0.012)</td>
<td>(0.014)</td>
<td>(0.013)</td>
<td>(0.023)</td>
<td>(0.023)</td>
</tr>
<tr>
<td>4RS</td>
<td>-0.033</td>
<td>-0.053*</td>
<td>-0.054</td>
<td>-0.075**</td>
</tr>
<tr>
<td>(0.020)</td>
<td>(0.021)</td>
<td>(0.039)</td>
<td>(0.027)</td>
<td>(0.027)</td>
</tr>
</tbody>
</table>

males and females increases to 43.5 ± 13.6 and 25.2 ± 8.4 d, respectively, and remains significantly different between sexes ($F_{[1,8]} = 6.52; p = 0.034$).

Discussion

The classical explanation of the timing of reproduction in marine pelagic fish is given by Cushing's (1969) mismatch hypothesis. This model assumes that spawning time is constrained by the necessity of maximizing the overlap between larval abundance and the seasonal supply of zooplankton. If this hypothesis is true, our results suggest that the timing of the peak of larval abundance is not precise because of age-specific effects on the timing of reproduction. We found that age has a positive effect on the timing of maturation and spawning in male and female Atlantic cod. Although at variance with long-accepted notions in the literature (e.g., Jónsson 1961; Harden Jones 1968), our results are consistent with studies for which empirical data on maturation are available (e.g., Jónsson 1982).

Ellertsen et al. (1989, p. 216), citing Sorokin's (1957) discussion of the Barents Sea cod stock, stated that “it is well known that larger and older fish spawn earlier than first time spawners.” With respect to the Icelandic cod stocks, Jónsson (1961, p. 131) also remarked that “it is a well known fact, that the first-time spawners start spawning later in the season than the older ones” although he provided no data to support this assertion. The conclusion that older cod spawn earlier than younger cod is based primarily on commercial fish catch data from Lofoten, Norway, the main spawning area for the Barents Sea population (Pedersen 1984). These data (Sund 1938; Rollefson 1940) indicated that the size of cod in commercial catches declined from mid-February through March. While these data suggest that older fish arrive on the spawning grounds before younger fish, it seems unwarranted to then conclude that older cod spawn before younger cod. According to Bergstad et al. (1987), spawning in Lofoten occurs primarily from mid-March through mid-April. Given that fish of all sizes and ages are present in the Kabelvåg, Sørvågen, Balstad, and Værøy regions of Lofoten by mid-to late March (Sund 1938; Rollefson 1940), the data do not imply that time of spawning is
Our conclusion that age is positively associated with spawning time is supported by Jónsson’s (1982) maturity data on Icelandic cod. He combined data from 1953 to 1974 and documented a progressive increase in the proportional representation of older spawning fish (sexes combined) throughout the spawning period. The relative importance of his suggestion that young spawners also spawn near the end of the spawning period is difficult to assess because he did not report age- and size-specific sample sizes. Recent spermatological data on spawning cod from NAFO region 3L collected by E.A. Trippel and M.J. Morgan (Department of Fisheries and Oceans, Biological Station, St. Andrews, NB E0G 2X0, Canada, and Department of Fisheries and Oceans, P.O. Box 5661, St. John’s, NF A1C 5X1, Canada, personal communications) indicated that younger males had depleted or spent their sperm volume before older males. These data provide empirical evidence of the positive association between age and time of spawning that we documented for Newfoundland/Labrador region cod. The negative correlation between age and spawning time that has been documented in herring, Clupea harengus (Iles 1964; Lambert 1987), and in brown trout, Salmo trutta (Elliott 1984), may reflect size-dependent, competitive interactions associated with spawning on a substrate. Although laboratory work indicates that some hydrated eggs are always present in females once they have begun to spawn (Kjesbu 1988), it is possible that some of the females we classified as maturing females (because of an absence of hyaline eggs) may have been spawning. However, the similarity of the age-related effects on spawning between females and males (whose maturation states are more easily identifiable) suggests that any misclassifications were unlikely to bias our results.

The data suggest that the duration of spawning increases with increasing age for both male and female cod. Such an association may or may not be adaptive. There can be considerable selective advantages to spreading reproduction over time to reduce temporal variance in offspring production (Gillespie 1977). By spawning over a wider seasonal window, an individual reduces the probability of having its offspring experience suboptimal conditions for growth and survival, e.g., entrainment off the continental shelf by Gulf stream warm core rings (Myers and Drinkwater 1988). Alternatively, physical factors may effect lengthened spawning by older individuals. Given that females release their eggs in multiple batches and that the interval between batches is approximately constant (Kjesbu 1989), larger females would be expected to spawn over a longer period of time than smaller females simply because of the former’s greater fecundity (May 1967) (unless larger females extrude more eggs per batch). A second, nonadaptive explanation is that space limitations within a female’s body prevent the hydration of her entire complement of eggs at one time. Thus, larger females would be forced to hydrate their eggs over a longer period of time than smaller females.

The reliability of our data can be assessed by comparing our indirect estimates of spawning duration with estimates measured in the laboratory. Excluding Belle Isle and Funk Island banks, spawning duration for female cod averaged 25 d. Kjesbu (1989) documented spawning intervals of 47, 51, and 60 d for three female Norwegian cod reproducing in tanks at 5–8°C. However, given that the cod in this study were approximately 2.5 times as fecund as those reared in the wild (Kjesbu 1989), the expected spawning intervals of cod in the wild, calculated by reducing

Fig. 4. Estimated relationship between age and the mean day of year at which 50% of male Atlantic cod enter into spawning and spent maturation states. See text for details.
Kjesbu’s (1989) estimates by 2.5, would be 19, 20, and 24 d — estimates similar to ours. K. Waiwood and C. Chambers (Department of Fisheries and Oceans, Biological Station, St. Andrews, NB EOG 2X0, Canada, and Huntsman Marine Science Centre, St. Andrews, NB, EOG 2X0, Canada, personal communications) documented a median spawning duration of 30–34 d for 10 Northwest Atlantic female cod at 4°C in the laboratory. Egg surveys from 1976 to 1982 in Lofoten, Norway (Pedersen 1984; see also Ellertsen et al. 1989), provide additional evidence that 25–35 d is a reasonable estimate of individual spawning duration. The presence of newly hatched eggs (less than 2 d old) in Lofoten is restricted to a relatively short period of time. Using the data provided by Pedersen (1984), we calculated the standard deviation of the duration of newly hatched eggs to be only 10.4 d. As this parameter incorporates variability among all spawning individuals, it is unlikely that the spawning duration of any single individual in Lofoten will, on average, be much greater than 30 d. In summary, the similarity of our estimates of spawning duration with those measured in the laboratory and estimated from egg surveys suggests that our data represent reasonable approximations of reproduction in the wild.

Our findings that both younger males and younger females initiate and complete spawning prior to their older counterparts provides indirect empirical evidence of assortative mating in cod. A strong argument for assortative mating can be made from the behavioural data provided by Brawn (1961) in her description of cod spawning in the laboratory. She noted that, after mounting the female dorsally, the male slips down on one side of the female, clasping her with his pelvic fins, and lies “in an inverted position below the female with the ventral surfaces of both fish and their genital apertures closely pressed together” (Brawn 1961, p. 187). Clearly, the probability of egg fertilization will be maximized when the vents of the spawning pair coincide, as would be the case for individuals of the same size.

The delay in spawning of older individuals, relative to younger individuals, may simply be the consequence of a delay in maturation. If the rate of production of gonadal tissue is largely independent of body size, as would be expected (Calder 1984) at the low temperatures —1 to 3°C at which Newfoundland/Labrador cod mature, then larger, older fish should take longer to produce their entire volume of ova or sperm than smaller, younger individuals because larger fish produce more eggs and sperm than smaller fish.

Our results provide strong evidence that the duration of spawning increases with age. The relative abundance of older cod in NAFO subareas 2J3KL has decreased dramatically since 1962, suggesting that the duration of spawning has also declined in this population (cf. Fig. 1). Given that increased fishing mortality will generally reduce the proportion of older fish in a population, this may increase variability in recruitment by decreasing the average age of spawning. Such an increase in recruitment variability has been hypothesized to exist at low stock sizes (Daan 1978; Shepherd and Cushing 1990). Increased proportional representation of younger individuals in the spawning population should reduce variability both in spawning times and in the temporal presence of larvae in early life. The latter will reduce the probability that larval emergence will coincide with peak abundances of zooplankton. The age dependence of maturation and spawning demonstrated here provides a mechanism by which size-selective mortality against larger, older individuals can increase variability in recruitment in Atlantic cod.

Acknowledgements

The research was funded by the Northern Cod Science Programme and could not have been conducted without the extensive sampling undertaken by the Gadoid Section of the Groundfish Division, Department of Fisheries and Oceans, and its predecessors. We are grateful to Ed Trippel, Joanne Morgan, Ken Waiwood, and Chris Chambers for discussion and for their permission to cite unpublished data. We thank Claude Bishop, Ken Drinkwater, Terje Jorgensen, Joanne Morgan, Adriaan Rijnsdorp, Svein Sundby, and an anonymous reviewer for helpful comments on earlier versions of the manuscript.

References

Sorokin, V.P. 1957. Oogenesis and sexual cycle of cod (Gadus morhua L.) Tr. PINRO 10: 125-144.

